

Vertical Structure of Arctic Haze

Chuck Brock, NOAA ESRL

- In situ data from U. of Washington airborne programs in 1980s
- Lidar image of haze structure
- Implications for research goals
- NOAA research plans in 2008

Treffeisen et al.

SAGE II observations suggest maximum vertical extent in March-April.

Similar cycle for sun/moon/ star extinction optical at Ny- Alesund (Herber et al.)

Need CALIPSO analysis?!

Quinn et al.--surface observations show Jan-Feb max at Barrow

August 1985: Dense summertime smoke layers aloft

April 1983: Dense pollution layers aloft

April 1986: Layers aloft, more diffuse near surface

Lidar images in April 1986:

- Extremely laminar transport
- Sloping thin layers
- Strong gradients vertically & horizontally
- Frequently decoupled surface layer
- Highest concentrations may be aloft
- Diamond dust and stratus near surface

Vertical Structure of Arctic Haze: Implications for Research Plans

- •Surface sites are often decoupled from most dense hazes—inferring indirect effects based on surface aerosol properties is hazardous
- What links layers aloft to climate?
 - -Direct radiative and thermal effects
 - Cloud modification (indirect effects)
 - Deposition to surface
- •What unique information can in situ measurements provide?

In situ measurements can focus on detailed characteristics of layers and clouds and the processes that link them to climate:

- Evaluate vertical structure of direct radiative properties of hazes
- Examine aerosol/cloud interactions, including IN composition, soot incorporation
- Measure in-situ cloud properties over surface site(s)
- Examine properties of aerosol aloft to help evaluate sources and likely climate effects

NOAA Airborne Research Plans for IPY

- •NOAA will *likely* participate in an airborne field program in spring 2008
- •P-3 research aircraft
- April 2008 time frame
- North American Arctic
- Possible bases include Fairbanks, others?

Methodolgies

- Quantify aerosol vis. optical properties (extinction, f(rh), absorption) as f(altitude)
- Quantify aerosol composition, including soot number, mass, mixing state
- •Test for closure between aerosol properties and spectrally resolved irradiance measurements, visible to near-IR
- •Look for aerosol effect on cloud μphysics [cloud number and size as *f(particle number, chemistry)*] within stratiform clouds forming within haze layers

Methodolgies continued

- Examine clear-air "diamond-dust" ice crystal properties in surface inversion
- Study artificial cloud particles (via ice nuclei chamber) for incorporation of soot
- Use trace gas measurements and transport simulations to determine source regions
- Use single particle composition to identify specific contributors (e.g., smelters)

Summary

Understanding complex direct and indirect processes in a vertically stratified environment requires a combination of approaches:

- surface observations (including deposition and snow/ice characteristics)
- remote sensing from surface, space, and air
- airborne in situ measurements
- radiative, chemical, microphsyical and transport modeling
- emissions/source evaluation

Proposed NOAA 2008 Field Study

International Polar Year Climate Study March – April 2008

Ice Extent

Proposed NOAA 2008 Field Study International Polar Year Climate Study March – April 2008

Focus will be on:

- Springtime sources and transport of pollutants to the Arctic
- Evolution of aerosol and gases into and within the Arctic
- Aerosol climate interactions